
08326e38-0

08326e38-0 ii

COLLABORATORS

TITLE :

08326e38-0

ACTION NAME DATE SIGNATURE

WRITTEN BY December 31, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

08326e38-0 iii

Contents

1 08326e38-0 1

1.1 No title . 1

1.2 what’s this? . 1

1.3 DISCLAIMER . 2

1.4 medplayer.library manual . 3

1.5 about the author . 8

1.6 some instructions . 9

1.7 acknowledgements . 9

08326e38-0 1 / 9

Chapter 1

08326e38-0

1.1 No title

MED libraries for HiSoft Pascal (v1.1)
by

Daniel~Mealha~Cabrita
1 november, 1997

~~~~~~~what’s~this?~~~~~~~

~~~~~~~~DISCLAIMER~~~~~~~~

~~~~some~instructions~~~~~

~medplayer.library~manual~

~~~~~acknowledgements~~~~~

~~~~~about~the~author~~~~~

1.2 what’s this?

Well.. HS-Pascal came supporting only standard OS 2.x libraries so
there isn’t much choices for playing music:

- To use ready-made MOD player asm routines inside your Pascal
program. (hardware banging is not my style..)

- Develop your own player routines (some people likes to
reinvent the wheel).

- Did i forgot any other way?



08326e38-0 2 / 9

There was a ready-made library for playing MED modules,
the medplayer.library that makes all the playing job.. but it
had support only for C programs (and i simply don’t like the
C language itself).

So i wrote my own Pascal support for medplayer.library, following
the exatly same implementation style that you know with all other
OS libraries supported by HiSoft.

What you’re waiting for?.. Let’s make some noise using Pascal!

1.3 DISCLAIMER

I, the
author
of medplayer.library support for HS-Pascal exclude

myself from ANY responsability from the consequences (direct or
indirect) of using my code.

I’m not affiliated with authors of MED, medplayer.library and
relationed products.

I’m not affiliated with HS-Pascal author or HiSoft.

I ONLY authorize the using of this product for particular
purpouses. For other purpouses, contact the author.

*** USE THIS CODE I’VE WRITTEN AT YOUR OWN RISK ***

Using my code in your program means acceptance of this terms.

------------------------------------------------------------------

Words about DISTRIBUTION:

I authorize this file being available online at Aminet, Aminet CDs
and FredFish CDs or disquettes.

This file can be distributed from one particular to another too.

This file can be included in magazines’ companion disk or CDs
ONLY IF i receive the respective issue and its companion disk(s)
or CD(s) (i strongly prefer the CD).

For other ways of distribution, contact the author for negotiating
permission.



08326e38-0 3 / 9

1.4 medplayer.library manual

***************************************************************************
* Instructions for using "medplayer.library" V2, by Teijo Kinnunen *
***************************************************************************

"medplayer.library" is a shared library, which can be used to load and play
MED/OctaMED 4-channel modules You can call its functions from any language
which supports library calls (C, Assembler, Basic...) (Note: All functions
must be called by the same task that opened the

library (using GetPlayer()). The library uses the task pointer
to keep track of the current user of the library.)

First you must install "medplayer.library" to your LIBS: drawer (click
Install_Libraries to do that). You can also load it with ARP’s "loadlib"
command.

The main advantage of using medplayer.library instead of modplayer.a player
routine is that you won’t have to modify your program when new MED player
routines are released. The user will just have to replace
medplayer.library and ZAP... (sorry, ZAP ;-) your program will support
HexaMED V63.132 (or whatever :-) modules... At the moment of writing
(1.1.1992) I have been working on OctaMED Professional, which will have a
new module format incompatible with MMD0 (it’ll be MMD1). If you use
medplayer.library, your programs will be compatible with MMD1s.

There’s a header file ’libproto.h’ that contains the prototypes and
#pragmas for use with SAS/Lattice C V5.

Here’s the complete list of the functions in "medplayer.library" (in RKM
autodoc-style):

---------------------------------------------------------------------------
---------------------------------------------------------------------------

GetPlayer

NAME
GetPlayer -- get and initialize the player routine

SYNOPSIS
error = GetPlayer(midi)
D0 D0

FUNCTION
This routine allocates the audio channels and CIAB timer A/B
and prepares the interrupt. If "midi" is nonzero, serial
port is allocated and initialized. You should call this
routine when your programs starts up.

INPUTS
midi = 0 no midi, 1 set up midi. When you use a song that

has only Amiga samples, there’s no reason to allocate
the serial port. Then set midi to 0.

RESULT



08326e38-0 4 / 9

If everything is OK, GetPlayer() returns zero. If initialization
failed or somebody else is currently using the library, then
GetPlayer() returns nonzero value.
NOTE: Even if GetPlayer() returned an error, you can still call

the library functions without making harm. They just won’t
work (except LoadModule(), UnLoadModule(), RelocModule()
and GetCurrentModule(), which always work).

SEE ALSO
FreePlayer

---------------------------------------------------------------------------
---------------------------------------------------------------------------

FreePlayer

NAME
FreePlayer -- free the resources allocated by GetPlayer()

SYNOPSIS
FreePlayer()

FUNCTION
This routine frees all resources allocated by GetPlayer().
Remember always call this routine before your program
exits. It doesn’t harm to call this if GetPlayer() failed.
If you don’t call this function during exit, audio channels,
timer etc. will remain allocated until reboot.

SEE ALSO
GetPlayer

---------------------------------------------------------------------------
---------------------------------------------------------------------------

PlayModule

NAME
PlayModule -- play module from the beginning

SYNOPSIS
PlayModule(module)

A0

FUNCTION
This routine starts to play the module from the beginning.
The module can be obtained by calling LoadModule() or it can
be incorporated directly into your program. The module has to
be relocated before calling PlayModule()!

INPUTS
module = pointer to the module.

SEE ALSO
ContModule, StopPlayer

---------------------------------------------------------------------------



08326e38-0 5 / 9

---------------------------------------------------------------------------

ContModule

NAME
ContModule -- continue playing the module from where it stopped

SYNOPSIS
ContModule(module)

A0

FUNCTION
ContModule() functions just like PlayModule() except if you
have stopped playing with StopPlayer(), the playing will
continue where it stopped. When you play the module first
time, you should use PlayModule().

INPUTS
module = pointer to module.

SEE ALSO
PlayModule, StopPlayer

---------------------------------------------------------------------------
---------------------------------------------------------------------------

StopPlayer

NAME
StopPlayer -- stops playing immediately

SYNOPSIS
StopPlayer()

FUNCTION
Stop.

SEE ALSO
PlayModule, ContModule

---------------------------------------------------------------------------
---------------------------------------------------------------------------

DimOffPlayer

NOTE
This is an obsolete function! It was removed in V2 of the library,
and it now just does StopPlayer()!

---------------------------------------------------------------------------
---------------------------------------------------------------------------

SetTempo

NAME
SetTempo -- modify the playing speed



08326e38-0 6 / 9

SYNOPSIS
SetTempo(tempo)

D0

FUNCTION
If you want to modify the playback speed, you can call this one.
The tempo value should be 1 - 240. Note that tempos 1 - 10 are
recognized as SoundTracker tempos. This function usually has no
use.

INPUTS
tempo = new tempo

---------------------------------------------------------------------------
---------------------------------------------------------------------------

LoadModule

NAME
LoadModule -- load a MED module from disk and relocate it

SYNOPSIS
module = LoadModule(name)
D0 A0

FUNCTION
When you want to load a module from disk, call this function.
The function loads only MED modules (MMD0). It doesn’t load
Tracker-modules, MED songs or object files. Only MMD0’s
(MMD0 is the identification word at the beginning of the file).
Because the module contains many pointers, they must be
relocated. This function relocates the module automatically.
If you include the module as a binary file converted with
Objconv, YOU must relocate it. This is an easy thing to do.
Just call RelocModule().

INPUTS
name = pointer to file name (null-terminated)

RESULT
module = pointer to module. If failed to load for some reason

(disk error, out of memory, not a module), zero will
be returned.

SEE ALSO
UnLoadModule

---------------------------------------------------------------------------
---------------------------------------------------------------------------

UnLoadModule

NAME
UnLoadModule -- frees the module from memory

SYNOPSIS
UnLoadModule(module)



08326e38-0 7 / 9

A0 FUNCTION
When you don’t need the module anymore, you MUST free the
memory it has used. Use this routine for it. Remember to
stop the player before unloading the module it is playing.

NOTE: unload only those modules which are loaded with
LoadModule(). If you attempt to free module which is a part
of the program, you will cause guru 81000009/81000005.

INPUTS
module = pointer to module. If zero, nothing happens.

SEE ALSO
LoadModule

---------------------------------------------------------------------------
---------------------------------------------------------------------------

GetCurrentModule

NAME
GetCurrentModule -- returns the address of module currently playing

SYNOPSIS
module = GetCurrentModule()
D0

FUNCTION
Simply returns the pointer of the module, which is currently
playing (or if player is stopped, which was played last). This
works also if some other task is currently playing. In this case,
because of multitasking, you should have no use for the value
(the module can be already unloaded). You may ask what use this
function has. Well, I’m not sure, but because this function
takes only 2 machine language instructions (8 bytes of memory)
there’s not much harm of it.

RESULT
module = pointer to current module

---------------------------------------------------------------------------
---------------------------------------------------------------------------

ResetMIDI

NAME
ResetMIDI -- reset all pitchbenders and modulation wheels and

ask player to resend the preset values

SYNOPSIS
ResetMIDI()

FUNCTION
This function resets pitchbenders and modulation wheels on all
MIDI channels. It also asks the player to send again the
preset change requests for all instruments, so that the presets
will be correct if the user has changed them. It performs the



08326e38-0 8 / 9

same function as MED’s Ctrl-Space.

---------------------------------------------------------------------------
---------------------------------------------------------------------------
NOTE: THE FOLLOWING FUNCTIONS ARE ONLY AVAILABLE IN MEDPLAYER.LIBRARY V2 OR
LATER, BE SURE THAT YOU’RE REALLY USING V2 OF THE LIBRARY e.g. MEDPlayerBase
= OpenLibrary("medplayer.library",2);
---------------------------------------------------------------------------
---------------------------------------------------------------------------

SetModnum

NAME
SetModnum -- select the number of the song (in multi-module)

SYNOPSIS
SetModnum(modnum)

D0

FUNCTION
Use this function to set the number of song you want to play.
Call this before PlayModule(). 0 is the first song, 1 is the
second, and so on. If the module is not a multi-module, this
function has no affection.

---------------------------------------------------------------------------
---------------------------------------------------------------------------

RelocModule

NAME
RelocModule -- relocate module

SYNOPSIS
RelocModule(module)

A0

FUNCTION
This function relocates the module. It should be used if you’ve
incorporated the module with Objconv program before using the
module. Note that LoadModule() automatically relocs everything.

---------------------------------------------------------------------------

***************************************************************************

1.5 about the author

Daniel Mealha Cabrita
dancab@base.com.br
dancab@polbox.com - as second option (try to avoid this)
http://www.geocities.com/SiliconValley/Park/8342/

sorry.. no snail mail address provided.

Curitiba - PR



08326e38-0 9 / 9

BRAZIL

1.6 some instructions

First of all: you MUST know how to deal with AmigaOS-style units
in HS-Pascal; i’ll not teach this here for you.

You’ll need:

- Amiga, HS-Pascal with its default OS units.

- medplayer.library V1+ (V2+ is recommended)

- MedPlayer.unit must be on HSPUnits:Units directory

After opening medplayer.library you must provide its pointer
to MedPlayerBase variable.

Before anything, you must make medplayer.library to allocate
audio channels using GetPlayer function (and later, closing it
using FreePlayer).

There’s some functions that only works with medplayer.library V2+
and it will bring unpredictable results if called with V1.

Due to its obsolence, the ’DimOffPlayer’ library function
is NOT implemented on this unit (what for?).

For now there’s NO support for eventually new functions
provided by V3+ of medplayer.library (can you send the docs???).

Remember closing everything you opened before program exit.

And YES.. you must compile this unit before using it!
(generating the .unit file and placing it into HSPUnits:Units).

1.7 acknowledgements

MED, medplayer.library and relationed products
© 1992-97 Teijo Kinnunen & Ray Burt-Frost

HSPascal (written by Keith Wilson)
Copyright © 1994 HiSoft, D-House & Christen Fihl

Amiga®, AmigaOS® and relationed products are trademarks of
Amiga International Inc.


	08326e38-0
	No title
	what's this?
	DISCLAIMER
	medplayer.library manual
	about the author
	some instructions
	acknowledgements


